Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.
Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.
Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
ESG-compliant OEM manufacturer in Vietnam
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Indonesia foot care insole ODM expert
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Taiwan sustainable material ODM production base
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Taiwan graphene sports insole ODM
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Graphene cushion OEM factory in Indonesia
Leukocytes, human white blood cells, swim using a mechanism called molecular paddling. Researchers have discovered that human leukocytes can swim using a novel mechanism called molecular paddling. Human white blood cells, known as leukocytes, swim using a newly described mechanism called molecular paddling, researchers report in the Biophysical Journal. This microswimming mechanism could explain how both immune cells and cancer cells migrate in various fluid-filled niches in the body, for good or for harm. “The capacity of living cells to move autonomously is fascinating and crucial for many biological functions, but mechanisms of cell migration remain partially understood,” says co-senior study author Olivier Theodoly of Aix-Marseille University in France. “Our findings shed new light on the migration mechanisms of amoeboid cells, which is a crucial topic in immunology and cancer research.” Cells have evolved different strategies to migrate and explore their environment. For example, sperm cells, microalgae, and bacteria can swim through shape deformations or by using a whip-like appendage called a flagellum. By contrast, somatic mammalian cells are known to migrate by attaching to surfaces and crawling. It is widely accepted that leukocytes cannot migrate on 2D surfaces without adhering to them. A prior study reported that certain human white blood cells called neutrophils could swim, but no mechanism was demonstrated. Another study showed that mouse leukocytes could be artificially provoked to swim. It is widely thought that cell swimming without a flagellum requires changes in cell shape, but the precise mechanisms underlying leukocyte migration have been debated. This is a 3D videomicroscopy of the cytoskeleton of a swimming lymphocyte showing protrusions traveling along cell body that mimic a breast-stroke motion. Credit: SoSPIM microscopy: L. Aoun, O. Theodoly, M. Biarnes, R. Galland In contrast to previous studies, Theodoly, co-senior study author Chaouqi Misbah of Grenoble Alpes University, and their collaborators provide experimental and computational evidence in the new study that human leukocytes can migrate on 2D surfaces without sticking to them and can swim using a mechanism that does not rely on changes in cell shape. “Looking at cell motion gives the illusion that cells deform their body like a swimmer,” Misbah says. “Although leukocytes display highly dynamic shapes and seem to swim with a breast-stroke mode, our quantitative analysis suggests that these movements are inefficient to propel cells.” Instead, the cells paddle using transmembrane proteins, which span the cell membrane and protrude outside the cell. The researchers show that membrane treadmilling — rearward movement of the cell surface — propels leukocyte migration in solid or liquid environments, with and without adhesion. However, the cell membrane does not move like a homogenous treadmill. Some transmembrane proteins are linked to actin microfilaments, which form part of the cytoskeleton and contract to allow cells to move. The actin cytoskeleton is widely accepted as the molecular engine propelling cell crawling. The new findings demonstrate that actin-bound transmembrane proteins paddle and propel the cell forward, whereas freely diffusing transmembrane proteins hinder swimming. This video shows imaging of the backward treadmilling of paddling molecules outside the cell. Credit: TIRF microscopy: N Garcia-Seyda Protein Recycling Drives Continuous Cellular Movement The researchers propose that continuous paddling is enabled by a combination of actin-driven external treadmilling and inner recycling of actin-bound transmembrane proteins through vesicular transport. Specifically, the paddling proteins at the rear of the cell are enclosed inside a vesicle that pinches off from the cell membrane and transported to the front of the cell. By contrast, the non-paddling transmembrane proteins are sorted out and do not undergo this process of internal recycling through vesicular transport. “This recycling of the cell membrane is studied intensively by the community working on intracellular vesicular traffic, but its role in motility was hardly considered,” Theodoly says. “These functions of protein sorting and trafficking seemed highly sophisticated for swimming. Our investigations, to our own surprise, bridge such distant domains as the physics of microswimmers and the biology of vesicular traffic.” The authors say that molecular paddling could allow immune cells to thoroughly explore all locations in the body as they migrate in liquid-filled niches such as swollen body parts, infected bladders, cerebrospinal fluid, or amniotic fluid. Moving forward, the researchers plan to investigate the functions of molecular paddling in various environments and assess whether other types of cells use this mode of migration. Reference: “Amoeboid Swimming Is Propelled by Molecular Paddling in Lymphocytes” by Laurene Aoun, Alexander Farutin, Nicolas Garcia-Seyda, Paulin Nègre, Mohd Suhail Rizvi, Sham Tlili, Solene Song, Xuan Luo, Martine Biarnes-Pelicot, Rémi Galland, Jean-Baptiste Sibarita, Alphée Michelot, Claire Hivroz, Salima Rafai, Marie-Pierre Valignat, Chaouqi Misbah and Olivier Theodoly, 11 August 2020, Biophysical Journal. DOI: 10.1016/j.bpj.2020.07.033 The work was supported by the French Agence Nationale de la Recherche, the LABEX INFORM, the Région Sud, the Turing Centre for Living systems, the Excellence Initiative of Aix-Marseille University-A*MIDEX, a French ”Investissements d’Avenir” program, and the company Alveole.
John Tower, a molecular biologist at USC Dornsife, proposes a new biological rule focusing on “selectively advantageous instability” (SAI), which suggests that some instability in biological systems offers evolutionary advantages. This principle challenges the conventional preference for stability, indicating that instability can contribute to genetic diversity, evolution, and even aging. University of Southern California Dornsife molecular biologist John Tower suggests that while living things generally prefer stability to conserve energy and resources, instability may also play a crucial role. A molecular biologist at the USC Dornsife College of Letters, Arts and Sciences may have found a new “rule of biology.” A rule of biology, sometimes called a biological law, describes a recognized pattern or truism among living organisms. Allen’s rule, for example, states that among warm-blooded animals, those found in colder areas have shorter, thicker limbs (to conserve body heat) than those in hotter regions, which need more body surface area to dissipate heat. Zoologist Joel Allen formulated this idea in 1877, and though he wasn’t the first or the last to present a rule of biology, his is one of just a handful to gain acceptance among scientists. Now, John Tower, professor of biological sciences at USC Dornsife, believes he has uncovered another rule of biology. He published his idea on May 16 in the journal Frontiers in Aging. Life may require instability Tower’s rule challenges long-held notions that most living organisms prefer stability over instability because stability requires less energy and fewer resources. For instance, hexagons appear frequently in nature — think honeycombs and insect eyes — because they are stable and require the least amount of material to cover a surface. Tower centers his rule on instability, specifically a concept called “selectively advantageous instability,” or SAI, in which some volatility in biological components, such as proteins and genetic material, provides an advantage to cells. In this computer simulation of a self-replicating structure, the pink square represents the signal to degrade the connection between the “parent” structure (left) and its “offspring” (right). This degradation is an example of a beneficial instability in biological structures. Credit: Courtesy of John Tower Tower believes SAI is a fundamental part of biology. “Even the simplest cells contain proteases and nucleases and regularly degrade and replace their proteins and RNAs, indicating that SAI is essential for life,” he explains. He says SAI also plays a key role in evolution. As cells go about their business, building and degrading various unstable components, he explains, they will exist in one of two states — one state with an unstable component present and one state in which the unstable component is absent. Natural selection may act differently on the two cell states. “This can favor the maintenance of both a normal gene and a gene mutation in the same cell population if the normal gene is favorable in one cell state and the gene mutation is favorable in the other cell state,” he says. Allowing this genetic diversity can make cells and organisms more adaptable. SAI may be at the root of aging — and more Selectively advantageous instability may also contribute to aging. Creating and then replacing the unstable components within cells comes at the cost of materials and energy. Breaking it down may also require additional energy. Also, since SAI sets up two potential states for a cell, allowing normal and mutated genes to co-exist, if the mutated gene is harmful, this may contribute to aging, Tower says. In addition to evolution and aging, SAI has other far-reaching implications. “Science has been fascinated lately with concepts such as chaos theory, criticality, Turing patterns, and ‘cellular consciousness,’ says Tower. “Research in the field suggests that SAI plays an important role in producing each of these phenomena.” Because of its apparent ubiquity in biology and its far-reaching implications, SAI may be the newest rule of biology, he says. Reference: “Selectively advantageous instability in biotic and pre-biotic systems and implications for evolution and aging” by John Tower, 15 April 2024, Frontiers in Aging. DOI: 10.3389/fragi.2024.1376060 The study was funded by the National Institute on Aging.
Insulin is a hormone produced by the pancreas that regulates blood sugar levels in the body. A new study conducted by the University of Würzburg suggests that exercise could curb the production of this hormone. Researchers discovered that insulin-producing cells are inhibited during activity, promoting energy use, and reactivated afterward, aiding recovery. Insulin is a vital hormone that plays a crucial role in regulating sugar metabolism in humans and other organisms. The mechanisms by which it performs this task are well understood. However, less is known about the control of insulin-secreting cells and the resulting insulin secretion. Researchers from the Biocenter of Julius-Maximilians-Universität (JMU) Würzburg in Germany have made new discoveries about the control of insulin secretion in their recent study published in Current Biology. The team, led by Dr. Jan Ache, used the fruit fly Drosophila melanogaster as a model organism. Interestingly, this fly also releases insulin after eating, but unlike humans, the hormone is not produced by pancreas cells, but rather by nerve cells in the brain. The figure shows the relationship between the movement and regulation of insulin-producing cells in the fruit fly. Credit: Sander Liessem / University of Wuerzburg Electrophysiological Measurements in Active Flies The JMU group figured out that the physical activity of the fly has a strong effect on its insulin-producing cells. For the first time, the researchers measured the activity of these cells electrophysiologically in walking and flying Drosophila. The result: when Drosophila starts to walk or fly, its insulin-producing cells are immediately inhibited y. When the fly stops moving, the activity of the cells rapidly increases again and shoots up above normal levels. “We hypothesize that the low activity of insulin-producing cells during walking and flight contributes to the provision of sugars to meet the increased energy demand,” says Dr. Sander Liessem, first author of the publication. “We suspect that the increased activity after exercise helps to replenish the fly’s energy stores, for example in the muscles.” Blood Sugar Plays No Role in Regulation The JMU team was also able to demonstrate that the fast, behavior-dependent inhibition of insulin-producing cells is actively controlled by neural pathways. “It is largely independent of changes in the sugar concentration in the fly’s blood,” explains co-author Dr. Martina Held. It makes a lot of sense for the organism to anticipate an increased energy demand in this way to prevent extreme fluctuations in blood sugar levels. Insulin Has Hardly Changed in Evolution Do the results allow conclusions to be drawn about humans? Probably. “Although the release of insulin in fruit flies is mediated by different cells than in humans, the insulin molecule and its function have hardly changed in the course of evolution,” says Jan Ache. In the past 20 years, using Drosophila as a model organism, many fundamental questions have already been answered that could also contribute to a better understanding of metabolic defects in humans and associated diseases, such as diabetes or obesity. Less Insulin Means Longevity “One exciting point is that reduced insulin activity contributes to healthy aging and longevity,” Sander Liessem tells us. This has already been shown in flies, mice, humans, and other species. The same applies to an active lifestyle. “Our work shows a possible link explaining how physical activity could positively affect insulin regulation via neuronal signaling pathways.” Further Steps in the Research Next, Jan Ache’s team plans to investigate which neurotransmitters and neuronal circuits are responsible for the activity changes observed in insulin-producing cells in the fly. This is likely going to be challenging: A plethora of messenger substances and hormones are involved in neuromodulatory processes, and individual substances can have opposite or complementary effects in combination. The group is now analyzing the many ways in which insulin-producing cells process input from the outside. They are also investigating other factors that could have an influence on the activity of these cells, for example, the age of the fly or their nutritional state. “In parallel, we are investigating the neuronal control of walking and flight behavior,” explains Jan Ache. The long-term goal of his group, he says, is to bring these two research questions together: How does the brain control walking and other behaviors, and how does the nervous system ensure that the energy balance is regulated accordingly? Reference: “Behavioral state-dependent modulation of insulin-producing cells in Drosophila” by Sander Liessem, Martina Held, Rituja S. Bisen, Hannah Haberkern, Haluk Lacin, Till Bockemühl and Jan M. Ache, 28 December 2022, Current Biology. DOI: 10.1016/j.cub.2022.12.005
DVDV1551RTWW78V
Memory foam pillow OEM factory Indonesia 》flexible, experienced, and ready to support your growthIndonesia athletic insole OEM supplier 》offering full-service support from design to deliveryEco-friendly pillow OEM manufacturer Taiwan 》supporting your ESG goals through sustainable production