Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

PU insole OEM production in China

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.China graphene product OEM service

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.High-performance insole OEM Thailand

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Thailand insole ODM design and production

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.China athletic insole OEM supplier

Two views of the carbonate chimneys at the Point Dume methane seep off southern California are covered with colorful microbial mats and permeated by methane-eating microbes. Credit: Courtesy of Courtesy of the Schmidt Ocean Institute Methane-eating microbes help regulate Earth’s temperatures with remarkably high metabolic rates within seafloor carbonate rocks. Methane is a strong greenhouse gas that plays a key role in Earth’s climate. Anytime we use natural gas, whether we light up our kitchen stove or barbeque, we are using methane. Only three sources on Earth produce methane naturally: volcanoes, subsurface water-rock interactions, and microbes. Between these three sources, most is generated by microbes, which have deposited hundreds of gigatons of methane into the deep seafloor. At seafloor methane seeps, it percolates upwards toward the open ocean, and microbial communities consume the majority of this methane before it reaches the atmosphere. Over the years, researchers are finding more and more methane beneath the seafloor, yet very little ever leaves the oceans and gets into the atmosphere. Where is the rest going? A team of researchers led by Jeffrey J. Marlow, former postdoctoral researcher in Organismic and Evolutionary Biology at Harvard University, discovered microbial communities that rapidly consume the methane, preventing its escape into Earth’s atmosphere. The study published in Proceedings of the National Academy of Sciences collected and examined methane-eating microbes from seven geologically diverse seafloor seeps and found, most surprisingly, that the carbonate rocks from one site in particular hosts methane-oxidizing microbial communities with the highest rates of methane consumption measured to date. “The microbes in these carbonate rocks are acting like a methane bio filter consuming it all before it leaves the ocean,” said senior author Peter Girguis, Professor of Organismic and Evolutionary Biology, Harvard University. Researchers have studied microbes living in seafloor sediment for decades and know these microbes are consuming methane. This study, however, examined microbes that thrive in the carbonate rocks in great detail. Seafloor carbonate rocks are common, but in select locations, they form unusual chimney-like structures. These chimneys reach 12 to 60 inches in height and are found in groups along the seafloor resembling a stand of trees. Unlike many other types of rocks, these carbonate rocks are porous, creating channels that are home to a very dense community of methane-consuming microbes. In some cases, these microbes are found in much higher densities within the rocks than in the sediment. During a 2015 expedition funded by the Ocean Exploration Trust, Girguis discovered a carbonate chimney reef off the coast of southern California at the deep sea site Point Dume. Girguis returned in 2017 with funding from NASA to build a sea floor observatory. Upon joining Girguis’s lab, Marlow, currently Assistant Professor of Biology at Boston University, was studying microbes in carbonates. The two decided to conduct a community study and gather samples from the site. “We measured the rate at which the microbes from the carbonates eat methane compared to microbes in sediment,” said Girguis. “We discovered the microbes living in the carbonates consume methane 50 times faster than microbes in the sediment. We often see that some sediment microbes from methane-rich mud volcanoes, for example, may be five to ten times faster at eating methane, but 50 times faster is a whole new thing. Moreover, these rates are among the highest, if not the highest, we’ve measured anywhere.” “These rates of methane oxidation, or consumption, are really extraordinary, and we set out to understand why,” said Marlow. The team found that the carbonate chimney sets up an ideal home for the microbes to eat a lot of methane really fast. “These chimneys exists because some methane in fluid flowing out from the subsurface is transformed by the microbes into bicarbonate, which can then precipitate out of the seawater as carbonate rock,” said Marlow. “We’re still trying to figure out where that fluid — and its methane — is coming from.” The micro-environments within the carbonates may contain more methane than the sediment due to its porous nature. Carbonates have channels that are constantly irrigating the microbes with fresh methane and other nutrients allowing them to consume methane faster. In sediment, the supply of methane is often limited because it diffuses through smaller, winding channels between mineral grains. A startling find was that, in some cases, these microbes are surrounded by pyrite, which is electrically conductive. One possible explanation for the high rates of methane consumption is that the pyrite provides an electrical conduit that passes electrons back and forth, allowing the microbes to have higher metabolic rates and consume methane quickly. “These very high rates are facilitated by these carbonates which provide a framework for the microbes to grow,” said Girguis. “The system resembles a marketplace where carbonates allow a bunch of microbes to aggregate in one place and grow and exchange — in this case, exchange electrons — which allows for more methane consumption.” Marlow agreed, “When microbes work together they’re either exchanging building blocks like carbon or nitrogen, or they’re exchanging energy. And one kind of way to do that is through electrons, like an energy currency. The pyrite interspersed throughout these carbonate rocks could help that electron exchange happen more swiftly and broadly.” In the lab, the researchers put the collected carbonates into high pressure reactors and recreated conditions on the sea floor. They gave them isotopically labeled methane with added Carbon-14 or Deuterium (Hydrogen-2) in order to track methane production and consumption. The team next compared the data from Point Dume to six additional sites, from the Gulf of Mexico to the coast of New England. In all locations, carbonate rocks at methane seeps contained methane-eating microbes. “Next we plan to disentangle how each of these different parts of the carbonates — the structure, electrical conductivity, fluid flow, and dense microbial community — make this possible. As of now, we don’t know the exact contribution of each,” said Girguis. “First, we need to understand how these microbes sustain their metabolic rate, whether they’re in a chimney or in the sediment. And we need to know this in our changing world in order to build our predictive power,” said Marlow. “Once we clarify how these many interconnected factors come together to turn methane to rock, we can then ask how we might apply these anaerobic methane-eating microbes to other situations, like landfills with methane leaks.” Reference: “Carbonate-hosted microbial communities are prolific and pervasive methane oxidizers at geologically diverse marine methane seep sites” by Jeffrey J. Marlow, Daniel Hoer, Sean P. Jungbluth, Linda M. Reynard, Amy Gartman, Marko S. Chavez, Mohamed Y. El-Naggar, Noreen Tuross, Victoria J. Orphan and Peter R. Girguis, Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2006857118

Honeybee allogrooming behavior (upper left) and trophallaxis (feeding, center). Credit: Dr Michelina Pusceddu, University of Sassari Honeybees increase social distancing when their hive is under threat from a parasite, finds a new study led by an international team involving researchers at UCL and the University of Sassari, Italy. The study, published in Science Advances, demonstrated that honeybee colonies respond to infestation from a harmful mite by modifying the use of space and the interactions between nestmates to increase the social distance between young and old bees. Co-author Dr. Alessandro Cini (UCL Centre for Biodiversity & Environment Research, UCL Biosciences) said: “Here we have provided the first evidence that honeybees modify their social interactions and how they move around their hive in response to a common parasite. “Honeybees are social animals, as they benefit from dividing up responsibilities and interactions such as mutual grooming, but when those social activities can increase the risk of infection, the bees appear to have evolved to balance the risks and benefits by adopting social distancing.” Among animals, examples of social distancing have been found in very different species separated by millions of years of evolution: from baboons that are less likely to clean individuals with gastrointestinal infections to ants infected with a pathogenic fungus that relegate themselves to the suburbs of anthill society. The new study evaluated if the presence of the ectoparasite mite Varroa destructor in honeybee colonies induced changes in social organization that could reduce the spread of the parasite in the hive. Among the stress factors that affect honeybees, the Varroa mite is one of the main enemies as it causes a number of harmful effects on bees at the individual and colony levels, including virus transmission. Honeybee colonies are organized into two main compartments: the outer one occupied by the foragers, and the innermost compartment inhabited by nurses, the queen, and the brood. This within-colony spatial segregation leads to a lower frequency of interactions between the two compartments than those within each compartment and allows the most valuable individuals (queen, young bees, and brood) to be protected from the outside environment and thus from the arrival of diseases. By comparing colonies that were or were not infested by the Varroa mite, the researchers found that one behavior, foraging dances, that can increase mite transmission, occurred less frequently in central parts of the hive if it was infested. They also found that grooming behaviors became more concentrated in the central hive. The researchers say it appears that overall, foragers (older bees) move towards the periphery of the nest while young nurse and groomer bees move towards its center, in response to an infestation, to increase the distance between the two groups. Lead author Dr. Michelina Pusceddu (Dipartimento di Agraria, University of Sassari) said: “The observed increase in social distancing between the two groups of bees within the same parasite-infested colony represents a new and, in some ways, surprising aspect of how honeybees have evolved to combat pathogens and parasites. “Their ability to adapt their social structure and reduce contact between individuals in response to a disease threat allows them to maximize the benefits of social interactions where possible, and to minimize the risk of infectious disease when needed. “Honeybee colonies provide an ideal model for studying social distancing and for fully understanding the value and effectiveness of this behavior.” Reference: “Honey bees increase social distancing when facing the ectoparasite Varroa destructor” by Michelina Pusceddu, Alessandro Cini, Simona Alberti, Emanuele Salaris, Panagiotis Theodorou, Ignazio Floris and Alberto Satta, 29 October 2021, Science Advances. DOI: 10.1126/sciadv.abj1398 The study involved researchers from UCL, the University of Sassari, the University of Turin and the Martin Luther University Halle-Wittenberg (Germany).

Researchers at the University of Cologne have discovered a protein complex, called DREAM, that inhibits DNA repair mechanisms in human, mouse, and nematode cells, thereby contributing to aging and disease. They successfully suppressed the DREAM complex with a pharmaceutical agent, boosting the cells’ resilience to DNA damage, and suggesting potential new treatments for aging and cancer, although further research is needed. Researchers showed that inhibiting the DREAM complex in human cells and mice enhanced DNA repair, increasing resilience to genomic damage. The findings have far-reaching implications for aging, cancer prevention, and space exploration, where radiation-induced DNA damage is a significant challenge. Researchers at the University of Cologne have found that a protein complex impedes the repair of genomic damage in human cells, mice, and the nematode Caenorhabditis elegans. Furthermore, they were able to successfully obstruct this complex with a pharmaceutical agent for the first time. “When we suppress the so-called DREAM complex in body cells, various repair mechanisms kick in, making these cells extremely resilient towards all kinds of DNA damage,” said Professor Dr. Björn Schumacher, Director of the Institute for Genome Stability in Aging and Disease at the University of Cologne’s CECAD Cluster of Excellence in Aging Research. DNA, which holds our genetic data, needs to be safeguarded carefully. However, it’s under constant threat due to environmental factors or our normal metabolism. Therefore, repairing DNA is vital for maintaining the stability of our genome and ensuring the proper functioning of our cells. “Our findings for the first time allow us to improve DNA repair in body cells and to target the causes of aging and cancer development,” Schumacher added. Still, more research is needed until these results can be translated into new therapies for human patients. The study was published in Nature Structural & Molecular Biology. DNA-Damage Leads to Aging and Disease Our genetic material is passed on from generation to generation. That is why it is particularly well protected in our germ cells. Highly precise DNA repair mechanisms are at work there, ensuring that only very few changes in the genetic material are passed on to offspring. Thanks to DNA repair, our human genome has been passed on to us by our ancestors for two hundred thousand years. It has always ensured that the genetic information is preserved. DNA is also constantly repaired in our body cells, but only for the duration of the individual’s life. Sometimes, children are born with faulty DNA repair systems, making them age more quickly and develop typical age-related diseases such as neuro-degradation and arteriosclerosis already in childhood. In some cases, they also have an extremely increased risk of cancer. These are all consequences of DNA damage not being properly repaired. The DREAM Complex Prevents Repairs Schumacher and his team explored why body cells do not have the same repair mechanisms as germ cells. In experiments with the nematode C. elegans, they found out that the DREAM protein complex limits the quantity of DNA repair mechanisms in body cells: the complex attaches to the DNA’s construction plans containing instructions for the repair mechanisms. This prevents them from being produced in large quantities. Germ cells, however, do not have the DREAM complex. Hence, they naturally produce large quantities of DNA repair mechanisms. Mammals Also Have a DREAM-Complex In further experiments with human cells in the laboratory (cell culture), the scientists showed that the DREAM complex functions in the same way in human cells. They were also able to override the DREAM complex with a pharmaceutical agent. “We were very pleased to see the same effect as we did in C. elegans. The human cells were much more resilient towards DNA damage after treatment,” said Arturo Bujarrabal, a postdoc in Schumacher’s team and lead author of the study. Treatment with the DREAM complex inhibitor also showed amazing effects in mice: The DNA in the retina of mice could be repaired and the function of the eye was preserved. The test was carried out in mice that, like some patients, age prematurely and show a typical degeneration of the eye’s retina. DNA-Damage in Space Genome damage also plays a major role in manned spaceflight because of the extremely high radiation in space. A longer stay in space without improved DNA repair is hardly imaginable. Schumacher sums up: “Therapies that target and improve this newly discovered master regulator of DNA repair could reduce the risk of cancer because genes remain intact.” In addition, the risk of age-related diseases would be reduced because cells can only fulfill their function with an intact genome. Reference: “The DREAM complex functions as conserved master regulator of somatic DNA-repair capacities” by Arturo Bujarrabal-Dueso, Georg Sendtner, David H. Meyer, Georgia Chatzinikolaou, Kalliopi Stratigi, George A. Garinis and Björn Schumacher, 23 March 2023, Nature Structural & Molecular Biology. DOI: 10.1038/s41594-023-00942-8 The study was carried out at the Institute for Genome Stability in Aging and Disease of the University of Cologne’s CECAD Cluster of Excellence in Aging Research.

DVDV1551RTWW78V

 


Smart pillow ODM manufacturer China 》a manufacturing partner you can rely on for quality and deliveryTaiwan graphene sports insole ODM 》seamless coordination from idea to finished productChina graphene product OEM service 》manufacturing with a focus on sustainability and comfort

文章標籤
全站熱搜
創作者介紹
創作者 me76yyc8 的頭像
me76yyc8

兒童足內翻足弓鞋墊穿到幾歲門市

me76yyc8 發表在 痞客邦 留言(0) 人氣(0)